

 Navigation

 	
 index

 	
 next |

 	genisys-connector-docker 0.1.0 documentation

Genisys connector: Docker

This component allows Genisys [https://github.com/cyberdyne-corp/genisys] to communicate with a Docker engine.

Contents

	Setup
	Docker

	From sources

	Configuration
	Configuration file

	Service definition

	HTTP API
	Service HTTP endpoint

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015 Anthony Lapenna.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	genisys-connector-docker 0.1.0 documentation

Setup

Docker

A public Docker image is available and can be used to start the component:

$ docker run -p "7051:7051" cyberdynesystems/genisys-connector-docker:latest

Do not forget to map the port 7051 of the container to a specific port on the Docker host.

Overriding the configuration

You can map your own configuration file in the container file system:

$ docker run -p "7051:7051" -v "/path/to/config/genisys-connector.yml:/app/genisys-connector.yml" cyberdynesystems/genisys-connector-docker:latest

From sources

Requirements

Ensure you have python >= 3.4 and git installed on your system.

Installation

Clone this repository and install the dependencies using pip:

$ git clone https://github.com/cyberdyne-corp/genisys-connector-docker && cd genisys-connector-docker
$ pip install -r requirements.txt

Start

Start the connector:

$ python main.py

 Copyright 2015 Anthony Lapenna.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	genisys-connector-docker 0.1.0 documentation

Configuration

Configuration file

The configuration file genisys-connector.yml is written in YAML format [https://en.wikipedia.org/wiki/YAML].

connector:
 # Server address to bind to.
 bind: 127.0.0.1

 # Application port
 port: 7051

 # Path to compute definitions
 service_file: ./services.py

docker:
 # URL of the Docker server
 url: unix://var/run/docker.sock

Connector section

This section is related to the connector configuration.

bind

The server address to bind to.

port

The port that will be used to communicate with the connector via HTTP.

service_file

A python file that defines an optional list of services that will be loaded by the connector during startup.

See Service definition below for more information on the format of the file.

Docker section

This section is related to the Docker engine.

url

The URL of the Docker engine.

Can be either a path to the Docker engine socket or an URL to the Docker API.

Service definition

In order to manage Docker containers for a service, the adapter provides a simple service definition format
to declare how to manage containers associated with a service.

A service definition looks like:

myService = {
 "name": "myService"
 "image": "docker_image:tag",
 "command": "command",
 "environment": {
 "ENV_VARIABLE_A": "value",
 "ENV_VARIABLE_B": "value",
 },
 "ports": ['8080']
}

A service definition must include a name and an image, it may optionally provide a command, an environment hash and an array of ports.

The image field is used to start a container, if the command field has been specified the container will be started using that command.
The image tag must be specified.

The image field is also used when stopping containers, the image is used as reference to search in running containers.

The environment field is used to inject environment variables into the containers associated with the service.

The ports field is used to expose a list of ports on the Docker host.

An optional service_file (see service_file) can be used to define services using the format defined above. These definitions will be loaded during the connector startup.

 Copyright 2015 Anthony Lapenna.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	genisys-connector-docker 0.1.0 documentation

HTTP API

The connector exposes a HTTP API. It can be used to perform CRUD actions on services and also to trigger remote procedure calls to manage containers.

NOTE: The examples use the httpie CLI [https://github.com/jakubroztocil/httpie] to query the API.

Service HTTP endpoint

The following endpoints are exposed:

	/service: List service definitions or register a new service definition

	/service/<service_name>: Retrieve or update a service definition

	/service/<service_name>/scale: Ensure a number of containers are running for a service

	/service/<service_name>/status: Return the number of running resources for a service

/service

This endpoint is used to list service definitions or to create a new service definition.

It supports the following methods: POST and GET.

When hitting the endpoint with a GET, it returns a JSON body like this:

{
 "myServiceA" = {
 "name": "myServiceA"
 "image": "docker_image:tag",
 "command": "command",
 "environment": {
 "ENV_VARIABLE_A": "value",
 "ENV_VARIABLE_B": "value",
 },
 "ports": ['8080']
 },
 "myServiceB" = {
 "name": "myServiceB"
 "image": "docker_image:tag",
 "ports": ['5000', '5001'],
 "command": null,
 "environment": null,
 }
}

When hitting the endpoint with a POST, it expects a JSON request body that must look like:

{
 "name": "service_name",
 "image": "docker_image:tag",
 "command": "command",
 "environment": {
 "ENV_VARIABLE_A": "value",
 "ENV_VARIABLE_B": "value",
 },
 "ports": ['port_number']
}

The name and image fields are mandatory.

The name field is used to identify the service.

The image field specifies the reference of the container image used when creating/stopping containers. The image tag must be included.

The command field specifies which command should be used when starting a container.

The environment field is used to inject environment variables into the containers associated with the service.

The ports field is used to expose a list of ports on the Docker host.

Example:

$ http POST :7051/service name="helloworld" image="tutum/hello-world:latest" ports:='["8080", "8081"]' environment:='{"VAR_A":"value", "VAR_B": "value"}'

/service/<service_name>

This endpoint is used to retrieve a service definition or to update it.

It supports the following methods: PUT and GET.

When hitting the endpoint with a GET, it returns a JSON body like this:

{
 "image": "tutum/hello-world:latest",
 "name": "helloworld"
 "command": null,
 "environment": null,
 "ports": null,
}

When hitting the endpoint with a PUT, it expects a JSON request body that must look like:

{
 "image": "tutum/hello-world:latest",
 "command": "/run.sh",
 "environment": {
 "VAR_A": "value"
 },
 "ports": ['8080'],
}

The image field is mandatory.

The image field specifies the image to use when starting/killing containers. The image tag must be included.

The command field specifies which command should be used when starting a container.

The environment field is used to inject environment variables into the containers associated with the service.

The ports field is used to expose a list of ports on the Docker host.

Example:

$ http PUT :7051/service/helloworld image="panamax/hello-world-php:latest" command="/run.sh" ports:='["8080", "8082"]' environment:='{"VAR_A":"value", "VAR_B": "value"}'

/service/<service_name>/scale

This endpoint is used to ensure that a specific number of containers associated to a service are running.

It expects a JSON request body to be POST.

The request body must look like:

{
 "number": number_of_containers,
}

The number field is mandatory.

Example:

$ http POST :7051/service/helloworld/scale number=3

/service/<service_name>/status

This endpoint returns the number of running resources for a service managed by this connector.

When hitting the endpoint with a GET, it returns a JSON body like this:

{
 "running_resources": number_of_running_resources,
}

 Copyright 2015 Anthony Lapenna.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	genisys-connector-docker 0.1.0 documentation

Index

 Copyright 2015 Anthony Lapenna.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/up.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		genisys-connector-docker 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 Anthony Lapenna.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

